

Program created by Dave Cole NK7Z 11/03/17

What will be covered

- The Earth's Atmosphere.
- What is the lonosphere?
- Ionization.
- Recombination.
- Ionospheric Layers.
- Refraction.
- Skip distance and Zones.
- Reflection phase shift.

- Atmospheric effects.
- Other Phenomena.
- Transmission losses.
- Tool Box Review.
- The Sun.
- The Earth.
- Prediction Tools.
- Questions

The Earth's Atmosphere

- Radio in a uniform free space environment, is just that-- Free!
- Radio in an atmosphere is a very different story.
- Changes in propagation are caused by non-uniform conditions within a selected atmosphere.
 - For Earth, the three major non-uniform conditions are:
 - Height
 - Location
 - Time, (day, night, season, year)

The Earth's Atmosphere

- Atmospheric Regions
 - Ionosphere
 - Most Important Region:
 - Regular variations.
 - Irregular variations.
 - Stratosphere
 - Relatively calm.
 - No temp changes.
 - Nothing to see here, move along.
 - Troposphere
 - Least important region.
 - Weather happens here.
 - Nothing to see here, move along.

Ionization

- What is Ionization:
 - Neutral gas atoms are floating around within the lonosphere.
 - The Sun, among other things, emits high energy UV light.
 - When UV rays enter the atmosphere, (daytime), they strike some of these floating neutral gas atoms, knocking off electrons.
 - When electrons are knocked free from neutrally charged atoms, the affected atoms become positively charged, and are called lons.
 - The electrons knocked off the atoms absorb some of the energy from the UV, and are then left floating around the lonosphere.
 - Ionization rates are time dependent.
 - This is why that region of the atmosphere is called the lonosphere.

Recombination

- What is recombination:
 - Recombination is the reverse of Ionization!
 - Free negatively charged electrons when located near positively charged lons, recombine to form a neutral atom.
 - Ionization, and recombination run at different rates depending on the amount of UV present.
 - UV presence is dependent on how much sunshine there is.
 - Hence the ratio of free electrons to neutral atoms in the atmosphere is dependent on how much sunshine hits the lonosphere.
 - Free electrons reflect radio waves, neutral atoms don't.

- Why Layers:
 - UV light arrives at the atmosphere with many energy levels.
 - More energy penetrates deeper into the atmosphere.
 - Less energy penetrates less deeply into the atmosphere.
 - A process called "Photo Ionization" is partly responsible for layer formation
 - As the electrons are stripped from atoms, they also gain some energy.
 - This energy gain is based on the energy level of the medium doing the stripping.
 - The electrons then form layers based on the amount of energy they absorbed.
 - This is a very simplified explanation, if you want more, see:
 - B. Zolesi and L. R. Cander, Ionospheric Prediction and Forecasting

- Day vs. Night:
 - Like Ionization, recombination rates depend on time of day.
 - Early morning to late afternoon:
 - Ionization rates exceed recombination rates.
 - Layer density increases across this time frame.
 - Maximum influence on radio propagation.
 - Late afternoon to early morning:
 - Recombination rates exceed Ionization rates.
 - Layer density decreases across this time frame.
 - E layer effects on radio propagation diminish.

- D Layer:
 - 30 to 55 Miles in height.
 - Low ionization due to less UV penetration.
 - At low frequencies the D layer and ground act like a lossy waveguide.
 - From low to medium frequencies, the D layer is highly absorptive.
 - Above 3 MHz., the D layer becomes more and more transparent to RF.
 - Above 30 MHz., the D layer starts to absorb RF again.
 - At night the D layer dissipates because of rapid ion/electron recombination.
 - This is why 80, and 160 go long at night, and short during the day.

- E Layer:
 - 55 to 90 Miles in height.
 - Rapid recombination rate, this layer begins to dissipate after sunset and is gone by midnight.
 - The E layer Permits medium range communications on low to medium frequencies when present.
 - Sometimes the E layer shadows the F layer so radio waves never get to the F layer.
 - As you approach 150 MHz., the E layer becomes transparent to radio.
 - A solar flare may cause this layer to ionize over set areas on both the dark side of Earth, and the sunlit side of Earth. This is called Sporadic-E skip.

- F Layer:
 - 90 to 240 Miles in height.
 - During the day, the F layer normally separates into two layers, the F1, and F2 layers.
 - The F layers are maximally ionized during the afternoon hours.
 - The F layers effects on propagation are not as pronounced as the D and E layers if the D and E are present.
 - The F layer remain ionized longer after sunset than any other layer. During sunspot maximum the F layers can stay ionized overnight.
 - F layer is the highest layer, as such is responsible for the longest propagation.
 - Single hop F2 distance can be as great as 3000 miles. Longer propagation requires multi-hop F2.

D LAYER: reflects vlf waves for long-range communications; refracts lf and mf for short-range communications; has little effect on vhf and above; gone at night.

E LAYER: depends on the angle of the sun: refracts hf waves during the day up to 20 MHz to distances of 1200 miles: greatly reduced at night.

F LAYER: structure and density depend on the time of day and the angle of the sun: consists of one layer at night and splits into two layers during daylight hours.

F1 LAYER: density depends on the angle of the sun; its main effect is to absorb hf waves passing through to the F2 layer.

F2 LAYER: provides long-range hf communications; very variable; height and density change with time of day, season, and sunspot activity.

Figure 1-12.—Ionospheric layers.

NK7Z, Version 1.00, 11/03/17

1

• A radio wave transmitted into an ionized layer is always bent. This is called refraction.

- Amount of refraction a ray undergoes depends on three main factors:
 - Ionization density.
 - Frequency.
 - Angle of entry.

NK7Z, Version 1.00, 11/03/17

14

- Amount of refraction a ray undergoes depends on three main factors:
 - Ionization density.
 - Frequency.
 - Angle of entry.

- Amount of refraction a ray undergoes depends on three main factors:
 - Ionization density.
 - Frequency.
 - Angle of entry.

Skip Distance and Zones

 Relationship between Ground Wave, Sky Wave, Skip Distance, and Skip Zone.

Skip Distance and Zones

 Relationship between Ground Wave, Sky Wave, Skip Distance, and Skip Zone.

Reflection Phase Shift

- There are two types of reflections:
 - Earth
 - The Earth behaves like a mirror for the most part.
 - Ionospheric
 - The lonosphere behaves much like a liquid fun house mirror, changing from moment to moment.

Atmospheric effects on propagation

- As stated earlier, changes in atmospheric conditions can, and do cause major changes in propagation, these changes can result in:
 - Communications distances being increased.
 - Communications distances being decreased.
 - Fading of received signals.
 - Enhancement of received signals.
 - HF Blackouts.
 - Any/All combinations of the above.

- Fading occurs because of:
 - Polarization changes.
 - Ionospheric absorption.
 - Multipath fading.

Up to 20 db can be lost to polarization changes.

NK7Z, Version 1.00, 11/03/17

The national association for AMATEUR RADIO

Ionospheric absorption:

Quiet Ionosphere UT = 12h 00m

Electron Column Density 100Km to 400Km (m-2) UT = 12h 00m

Ionospheric Storm UT = 12h 00m

Multipath fading:

Other phenomena that affect the lonosphere

- Regular Variations
 - Are divided into four main classes:
 - Daily:
 - Based on changes occurring from day to day due to the earth's rotation.
 - Is it daytime, or nighttime?
 - Twenty Seven Day:
 - Based on the solar rotation:
 - Solar Storms rotating back into Earth view.
 - Sunspots rotating back into Earth view.
 - Seasonal:
 - Based on the earth's position relative to the Sun:
 - Sun light hits at different angles during different times of the year, on a set location.
 - Eleven Year:
 - Based on cyclic solar condition:
 - Around every 11 years the bands go to pot, then return four or five years later.

- Daily changes in the lonosphere:
 - Daily changes in the lonosphere play the largest role in propagation:
 - Is it daytime?
 - Is it nighttime?
 - How much ionization is happening at this moment?
 - What time is it now?
 - What is the distance to my target?

• Twenty Seven Day cycle is rotation based.

Seasonal variations:

• Eleven Year:

- The sunspot cycle is a regular cycle that has a minimum, and maximum level of activity approximately every 11 years.
 - During times of maximum activity, the ionization density of all layers increases.
 - Because of this the critical frequency of the D, F1, and F2 layers increase.

Transmission losses

- Free Space losses
 - The inverse square law

NK7Z, Version 1.00, 11/03/17

8

Transmission losses

Reflection loss:

- Each reflection costs db.
- Water cost less, dirt more.

Toolbox Review

- Atmosphere, construction.
- Ionosphere, what is it.
- Ionization, how it happens.
- Recombination, why it is important.
- Ionospheric Layering, how layering happens,
- Refraction, how a signal bends in the ionosphere.
- Skip Distance and Zones, shadowed areas, etc.
- Reflection phase shift, it's a mirror!
- Other phenomenon affecting propagation, sun, day/night, etc.
- Transmission losses, reflection, losses.

The Sun

Solar Flux:

- Solar flux is a measure of radio noise at 2800 MHz.
 Or 10.7 cm. It is called SFI.
- Increasing SFI generally mean better propagation.
- Increasing SFI also mean more noise.
- Increasing SFI means more ionization, and the higher the MUF becomes.

The Sun

X-Ray Flux:

- Measured as A0.0 to X9.9.
 - The letters A, B, C, M, and X, represent increasing energy levels of X-Rays hitting the ionosphere.
- Primarily impacts the D layer.
- Increasing X-Ray flux means more D layer absorption, and hence less DX.
- Decreasing X-Ray flux means less D layer absorption, and more DX.

The Sun

- Components affecting propagation:
 - Geomagnetic indices:
 - K Index
 - A measure of the disturbance in the earth's magnetic field.
 - K indices are measured all across the planet.
 - No two K indicies are even close to each other.
 - All are averaged to give the K index.

- Major components affecting propagation:
 - Geomagnetic indices:
 - Kp Index
 - Ranges from 0 to 9
 - 0-1 Quiet no degradation in conditions.
 - 2-4 Unsettled, some degradation of conditions.
 - 5 Signifies a minor storm
 - 6-8 Increasingly higher storm levels
 - 9 Major storm, HF blackout.

- Major components affecting propagation:
 - Geomagnetic indices:
 - A Index:
 - The A index is a measure of the stability of the Earth's magnetic field.
 - It is derived from the K index by scaling to give a linear value then averaged over a single day period, from multiple locations on Earth.
 - It ranges from 0-400.
 - 100 is storm level.
 - 400 represents a severe geomagnetic storm.

- A and K are related to Solar Flux:
 - The higher the SFI, the worse the A and K get.
 - The lower the SFI, the better the A and K get.
 - Best times are after a flare:
 - The rolling 90 day SFI holds high, while the A and K drop faster. You end up with high rolling SFI, and low A and K, so little noise, and good propagation...

• How A and K relate:

AP INDEX	KP INDEX	DESCRIPTION
0	0	Quiet
4	1	Quiet
7	2	Unsettled
15	3	Unsettled
27	4	Active
48	5	Minor storm
80	6	Major storm
132	7	Severe storm
208	8	Very major storm
400	9	Very major storm

11

Geomagnetic indices:

- Bz component:
 - A measure of the direction of the interplanetary magnetic field.
 - +50 to -50.
 - Measured in nT, or nano Teslas.
 - Plus mean interplanetary field is aligned with earth's magnetic field.
 - Minus means interplanetary field is opposite of the earth's magnetic field.
 - When minus, the earth's magnetic field is canceled somewhat, this increases the effects of solar particles on the lonosphere.
 - Plus Bz equals good DX, minus equals bad DX conditions.

Geomagnetic indices:

- Solar Wind:
 - Amount, and speed of solar particles hitting the Earth.
 - High speed/density solar wind crushes the Ionosphere down towards the Earth.
 - Low speed/density solar wind allows the ionosphere to expand.

What is a good DX day?

- What makes a good day DX wise?:
 - A high SFI.
 - Higher is better.
 - Slow less dense Solar Wind.
 - Less wind, is better.
 - No geomagnetic storms.
 - No storm is best.
 - A plus Bz.
 - Plus good.
 - Minus bad.

Prediction Tools

- Tools:
 - Spaceweather:
 - spaceweather.com
 - NOAA Space Weather Conditions:
 - http://www.swpc.noaa.gov/communities/space-weatherenthusiasts
 - Jet Propulsion Labs
 - https://iono.jpl.nasa.gov/

Prediction Tools

- Tools:
 - VOCAP:
 - http://www.voacap.com/p2p/index.html
 - NONBH:
 - http://www.hamqsl.com/solar3.html
 - ARRL Propagation Charts:
 - http://www.arrl.org/propagation
 - Online HF Propagaton Prediction:
 - http://www.stroobandt.com/propagation/en/index.html

Prediction Tools

- Tools:
 - Usable HF Frequiencies:
 - http://www.hfpropagation.com/
 - Ham Cap:
 - http://www.dxatlas.com/hamcap/
 - Band Conditions:
 - http://www.bandconditions.com/
 - Propagation:
 - http://dx.qsl.net/propagation/

Questions

Citations

- 1) US Navy, (2003) "Electronic Technician, Volume 7, Antennas and Wave Propagation"
- 2) NRL, (Navel Research Lab)
- 3) NASA, GSFC
- 4) Mao-Chang Liang, King-Fai Li, Run-Lie Shia and Yuk L. Yung, (2008) "Short-period solar cycle signals in the ionosphere observed by FORMOSAT-3/COSMIC", GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L15818, doi:10.1029/2008GL034433, 2008
- 5) "Fading" https://www.revolvy.com/main/index.php?s=Fading&uid=1575
- 6) "Vertical total electron content map" https://iono.jpl.nasa.gov/RT/latest_rti.gif
- 7) "Solar Cycle Primer" https://www.nasa.gov/mission_pages/sunearth/news/solarcycle-primer.html
- 8) "Powering through the Solar System with Exponants" https://www.jpl.nasa.gov/edu/teach/activity/powering-through-the-solar-system-with-exponents/
- 9) Franks Web Space "Radio Communications" http://www.frankswebspace.org.uk/ScienceAndMaths/physics/physicsGCE/radioComms.htm
- 10) "Radio Jove, The effects of Earths upper atmosphere on radio signals"
- https://radiojove.gsfc.nasa.gov/education/educ/radio/tran-rec/exerc/iono.htm
- 11) "Solar Indices: Solar Flux A K Kp Index" https://www.electronics-notes.com/articles/antennaspropagation/ionospheric/solar-indices-flux-a-ap-k-kp.php

Legal Stuff

Built using Linux!

Presentation Software: LibreOffice.

Creative Commons License

QR Code for Website

